If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+15x-70=0
a = 6; b = 15; c = -70;
Δ = b2-4ac
Δ = 152-4·6·(-70)
Δ = 1905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1905}}{2*6}=\frac{-15-\sqrt{1905}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1905}}{2*6}=\frac{-15+\sqrt{1905}}{12} $
| -4y+11=99 | | 7•p=-56 | | 8/3(2x-1)=-187/10-5/2x | | 90v+80+6=69 | | 5x-3=28;5 | | 5x-2-3x=-87+3x | | 14=t/3+12 | | 2x(3x-2)-3(1-(2x)2x+3)-x-3/2)=13 | | 8+6n=10n-1-3 | | 5(3−x)+7x=3x+15−x | | 11x-4=-3x-2 | | 10.75x3/4=10 | | n-4+5n=-10 | | 2/7x+9=-1 | | x6=8 | | −9q+2=−16 | | 1x-10=-3 | | 10x+7=5x-32 | | 2(x-1)+2=4x | | -(15/4x-2)=-20-45x/12 | | 10x+3=5x-32 | | 4n-35n=6-n+4 | | 4/5n=13 | | x-0.4=5.1(x+3) | | 5x2+15x−140=0 | | 2-3s=7-2s | | 65=14-7k | | 3(+-1)=9+t | | 4(3x−1)+7−x=2x+3+9x | | F(2)=4x^-3x-1 | | 2(n−8)=−6 | | 51+c=54 |